AClass of HybridDG/FVMethods for Conservation Laws III: Two-Dimensional Euler Equations

نویسندگان

  • Laiping Zhang
  • Wei Liu
  • Lixin He
  • Xiaogang Deng
چکیده

A concept of ”static reconstruction” and ”dynamic reconstruction” was introduced for higher-order (third-order or more) numerical methods in our previous work. Based on this concept, a class of hybrid DG/FV methods had been developed for one-dimensional conservation law using a ”hybrid reconstruction” approach, and extended to two-dimensional scalar equations on triangular and Cartesian/triangular hybrid grids. In the hybrid DG/FV schemes, the lower-order derivatives of the piecewise polynomial are computed locally in a cell by the traditional DG method (called as ”dynamic reconstruction”), while the higher-order derivatives are re-constructed by the ”static reconstruction” of the FV method, using the known lower-order derivatives in the cell itself and in its adjacent neighboring cells. In this paper, the hybrid DG/FV schemes are extended to two-dimensional Euler equations on triangular and Cartesian/triangular hybrid grids. Some typical test cases are presented to demonstrate the performance of the hybrid DG/FV methods, including the standard vortex evolution problem with exact solution, isentropic vortex/weak shock wave interaction, subsonic flows past a circular cylinder and a three-element airfoil (30P30N), transonic flow past a NACA0012 airfoil. The accuracy study shows that the hybrid DG/FV method achieves the desired third-order accuracy, and the applications demonstrate that they can capture the flow structure accurately, and can reduce the CPU time and memory requirement greatly than the traditional DG method with the same order of accuracy. AMS subject classifications: 76G25, 76H05, 76M10, 76M12, 76M25

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation

‎In this paper Lie point symmetries‎, ‎Hamiltonian equations and conservation‎ ‎laws of general three-dimensional anisotropic non-linear sourceless heat transfer‎ ‎equation are investigated‎. ‎First of all Lie symmetries are obtained by using the general method‎ based on invariance condition of a system of differential equations under a pro‎longed vector field‎. ‎Then the structure of symmetry ...

متن کامل

Euler Equations and Related Hyperbolic Conservation Laws

Some aspects of recent developments in the study of the Euler equations for compressible fluids and related hyperbolic conservation laws are analyzed and surveyed. Basic features and phenomena including convex entropy, symmetrization, hyperbolicity, genuine nonlinearity, singularities, BV bound, concentration, and cavitation are exhibited. Global well-posedness for discontinuous solutions, incl...

متن کامل

Measure-Theoretic Analysis and Nonlinear Conservation Laws

We discuss some recent developments and trends of applying measure-theoretic analysis to the study of nonlinear conservation laws. We focus particularly on entropy solutions without bounded variation and Cauchy fluxes on oriented surfaces which are used to formulate the balance law. Our analysis employs the Gauss-Green formula and normal traces for divergence-measure fields, Young measures and ...

متن کامل

Constraint Preserving Schemes Using Potential-based Fluxes. Ii. Genuinely Multi-dimensional Central Schemes for Systems of Conservation Laws

We propose an alternative framework for designing genuinely multi-dimensional (GMD) finite volume schemes for systems of conservation laws in two space dimensions. The approach is based on reformulating edge centered numerical fluxes in terms of vertex centered potentials. Any consistent numerical flux can be used to define the potentials. Suitable choices of potentials result in schemes that p...

متن کامل

Self-similar solutions‎ ‎of the Riemann problem for two-dimensional systems of conservation‎ ‎laws

In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012